skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "and Dallesasse, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The recent development of 8-in Gallium Nitride on Silicon (GaN-on-Si) wafers has facilitated cost effective, large-scale manufacturability of GaN-based electronics. Leveraging its wide band gap, capability to support a two dimensional electron gas (2DEG) layer, and strong built-in polarization effects, GaN-based electronic devices have become a viable cost-effective successor to silicon-based devices for high-performance applications where the large bandgap and high breakdown field are required. The advantageous properties of GaN-on-Si material, however, have yet to be utilized for photonic integrated circuit applications. Therefore, the exploration of GaN for efficient on-chip optical modulation and switching applications is examined. In order to effectively characterize GaN’s capabilities for optical modulation and switching, GaN-based Mach-Zehnder modulators are designed and fabricated. Through simulating the propagating optical modes supported in a GaN-based Mach-Zehnder structure, the geometry of the device is designed to optimize optical modal overlap with the 2DEG layer while maintaining single-mode performance. Through electrical and optical characterization, the effective electro-optic coefficient and Vπ length are measured. These measurements provide a method of benchmarking GaN-based photonic devices for their optical modulation and switching efficiency. 
    more » « less